
 Information Security Education Journal Volume 1 Number 2 December 2014 99

Motivating Secure Coding Practices in a Freshman-Level Programming Course

Bryson R. Payne , Aaron R. Walker
Computer Science and Information Systems
University of North Georgia
82 College Circle. USA
Dahlonega, GA 30597
{bryson.payne, aaron.walker}@ung.edu

ABSTRACT: Secure application development is becoming even more critical as the impact of insecure code becomes
deeper and more pervasive in our personal and professional lives. The approach described in this paper seeks to motivate
computer science students to write secure code almost from the very beginning by focusing on concrete examples of
common software vulnerabilities in the second freshman-level programming course. Sample exercises and assignments
are given as examples that can be reused in similar courses. While long-term data collection is still ongoing, initial results
are promising enough that the method is presented here in detail to support university faculty interested in incorporating
lessons and real-world examples in secure app development in their programming courses at any level.

Keywords: Secure Application Development, Secure Coding, Security-aware Programming, Application Security

Received: 2 July 2014, Revised 10 August 2014, Accepted 18 August 2014

© DLINE. All rights reserved

1.Introduction

As apps and other computer code touch more and more areas of our lives, from smart phones and business applications to
medical devices and surveillance systems, from self-driving cars and virtual assistants to drones and robots, secure coding
practices are more vital than ever. This paper presents an approach to motivate secure coding practices beginning as early as
the second freshman-level computer science programming course by giving students hands-on examples of common software
vulnerabilities and developing the error-handling and secure coding tools to support safe program operation, and safe
program termination, as appropriate, in a given real-world situation.

The methods and examples described in this work can be reused and modified to fit a variety of levels of programming
courses in a variety of languages. The sample exercises and assignments provided in this paper were developed in a Java II
course, the second freshman-level programming course at the authors’ institution.

2. Background

A great deal of research and pedagogy in secure application development has been aimed at web application development
(Noureddine & Domodaran, 2008), including agile development for the web (Ge, Paige, Polak, Chivers & Brooke, 2006).

 100 Information Security Education Journal Volume 1 Number 2 December 2014

Works like these establish and advocate for guidelines and best practices in secure coding in web applications for a number
of reasons. Web-based software vulnerabilities are fairly prominent, receive significant media attention, and perhaps affect
our daily lives in a more pervasive manner, as we make online purchases, pay bills online, and interact and transact over the
Internet on a daily basis.

In examining the effectiveness of code review after-the-fact, Edmundson et al. (2013) highlighted the fact that not even a
single one out of 30 experienced developers in a study could find all the confirmed vulnerabilities in a previously-written,
small web application. The application in question had only seven known vulnerabilities, of just three types, but none of the
30 developers was able to find all seven when conducting a security code review after the application had been written and
deployed, underscoring the need for secure application development practices from the very beginning.

For this reason, some attention has been given to developing secure coding practices even in introductory computer science
courses. Markham (2009) advocates incorporating security principles in introductory CS1 classes and reports higher
engagement and motivation in her students, from using interesting current security topics for classroom discussion to writing
secret-message-passing programs. The work presented in this paper extends Markham’s work to include motivating examples
of real-world code vulnerabilities at the CS2 level, when students have a bit more programming experience and can apply
secure coding practices more ably.

Chi, Jones and Brown (2013) developed online modules to teach secure coding principles to a variety of STEM majors, with
different examples tailored individually by major, from science and math to engineering and CIS. Using a static analysis tool
along with video demos and quizzes to introduce students to code vulnerabilities such as buffer overflows, input validation,
file operations and more, students showed significant improvement in perceived familiarity with secure programming after
following the modules online. The authors reemphasize that secure coding principles should be taught early and continuously
throughout courses involving code development.

It is for good reason that the focus on secure coding has moved earlier in the education of future programmers – as Futcher
and von Solms (2008) perceptively note, “software developers generally ignore the idea of security” (p.56). Although this
is a generalization, accrediting and professional standards organizations have recognized the issue and have provided
curriculum guidelines (Cooper et al., 2010) to assist colleges and universities in building CS and related curricula that include
information security components. In many institutions, though, security is covered only in conjunction with ethics as a
required curriculum component (Markham, 2009), with upper-level electives in security rather than security woven throughout
lower-level and upper-level content courses. The work presented in this paper aims to serve as an approach toward incorporating
security in application development courses at any level, beginning as soon as the first or second programming course.

The focus on motivation is intentional, as prior work (Kanno, Terada, Yajima, Kamamura & Doi, 2009) emphasized the
importance of motivational factors in information security implementation. Kanno’s team examined various motivating factors,
or drives, from risk management and internal control to requirements from business partners and social responsibility, and
also separated motivating factors by whether respondents had experienced information security incidents directly. IT
professionals attending security conferences showed different levels of various motivating factors for information security
adoption and implementation if they had experienced an information security breach or incident directly, showing higher
concern for internal controls, while respondents who had not experienced an information security incident directly reported
a greater concern if security were a requirement from business partners, for example.

In the introductory non-major CS/IT course at our institution, as well as in the required Computer Ethics course for CS and
CIS majors, motivating examples like those detailed by Newman (2006), including cybercrime, identity theft, and other
security threats and vulnerabilities, are used to enhance the relevance of class discussions and deliverables. The work
presented in this paper is the result of a first attempt at providing real-world, motivational, and accessible examples of various
code vulnerabilities and the secure coding practices that can address those vulnerabilities at the level of a second-semester
freshman CS or CIS major.

3. Approach

3.1 Class Discussions
Similar to previous research (Markham, 2009; Newman, 2006), discussions in any computing course can benefit from injecting

 Information Security Education Journal Volume 1 Number 2 December 2014 101

topics of current interest, from web security breaches to hacked Twitter accounts, and so on. In the authors’ experience,
simply taking a small amount of time to acknowledge security incidents as they arise, and where possible, describing possible
approaches to securing IT resources against such incidents, can contribute significantly to interest and motivation in a
course, including programming courses. The fact that this interest and motivation is centered on information security may be
a happy bonus and contribute to greater security focus later in the students’ studies.

3.2 First Hands-on Experiences
The importance of secure coding can begin as early as the first input validation, and certainly by the second programming
course in the major students should be exposed to bad input examples and write code to handle erroneous inputs. It is easy
in the rush of teaching multiple topics, though, to skip over a motivating example as simple as entering a string when an
integer is expected as a benign example, or attempting code injection as a malicious intruder might.

Showing the effects of bad user input in even a simple program, like a phone-book/contact-list app or the calculator app
developed in Section 3.3 below, can help frame and demystify the input checking and validation that we teach.

If a programming course includes any treatment of database interaction, a straightforward SQL code injection example can
open students’ eyes to the challenge and complexity of securing both web and traditional apps. A personal favorite SQL code
injection example of the authors’ can be found in (Munroe, 2007).

In courses that deal with file input and output, a motivating exercise on exception handling can include opening a file on a
USB flash drive in any popular application (an Office app, Notepad++, any app will serve just fine), then removing the USB
drive at various stages – right before saving, for example –attempting to delete the file at the command line or shell while
editing can be instructive, as well. (Of course, some caution is due here, and discussing the possible negative impacts of
yanking a USB drive out while in use is both appropriate and fortuitous at this point.) Examining the temporary “owner” file
left by Microsoft Word in a text or binary/hex editor when a student fails to close a file correctly can be an interesting detour
in itself.

After trying other applications to see how they handle (or sometimes fail to handle) missing files and other problems,
students can more readily envision the types of exceptional situations that could occur in the regular, or irregular, use of the
application they’re building.

3.3 A Buffer Overflow Example
Other languages may be better suited to demonstrate the impact of a buffer overflow, C and C++ for example, as these
languages typically do not protect against accessing or overwriting data in any part of memory, including checking to see
that data written to the default buffer type, an array, is within the boundaries of the buffer/array. However, a motivating
example and related discussion around buffer overflows can still be valuable, even in a Java course.

From an information security perspective, buffer overflow vulnerability is one of the most important software code concerns.
Buffer overflow occurs when an object, such as an array, has data written to it which exceeds the object’s defined bounds.
This can lead to a software crash, memory leak, data corruption, or even the execution of malware. Fortunately for us Java is
resistant to buffer overflows due to a built-in check for ArrayIndexOutOfBoundsException, making examples of such attacks
easier to show with examples without exposing a system to risk.

import java.util.Arrays;
public class BufferOverflow
{
 public static void main (String [] args)
 {
 int[] lucky = new int[12];
 for (int i = 0; i < 21; i++)
 lucky[i] = (int) (Math.random() * 30 + 1);
 System.out.println (“Your lucky numbers are “ + Arrays.toString (lucky) + “.”);
 }
}

 102 Information Security Education Journal Volume 1 Number 2 December 2014

The above program is intended to provide the user with an array of 12 lucky numbers chosen at random between the values
of 1 and 30. In order to obtain these random numbers and populate them into the array, a for loop is used. Unfortunately, the
programmer made a mistake. The array is of length 12 and the for loop allows 21 iterations, a typographical error, perhaps.
This, of course, exceeds the bounds of the array and generates an ArrayIndexOutOfBoundsException, forcing a program
termination. While Java does not allow access to memory out-of-bounds, the program terminates and provides an opportunity
to discuss the impact of various programs failing in this way. In the lucky number app, the impact of unexpected termination
is quite small, but in a medical device or self-driving car, for example, a program crash could be much more serious.

Not every programming language is as vigilant as Java, however. Many other languages, like C and C++ mentioned above,
do not have built-in protection against buffer overflows and therefore must rely upon the operating system to handle these
events (Microsoft Windows uses DEP and ASLR). It is important for beginning programmers to understand the dangers of
buffer overflows, especially as they broaden their skills to cover multiple languages.

3.4 An Exception-Handling Example
Whenever input is required from a user, there is an opportunity for errors to happen. If a program prompts a user for a name,
but he or she responds instead with a sequence of numbers, this may result in an unexpected or even comical condition when
the “name” is used elsewhere in the program. If a user is prompted for a number and responds by typing a string of characters
instead, however, the program could crash altogether.

Let’s consider the following simple calculator program.

//**

// MyCalculator.java

//

// Demonstrates the need for exception handling

//**

import java.util.Scanner;

public class MyCalculator

{

 //——————————————————————

 // Reads user input from the command line to

 // collect two numbers and an operator to

 // perform basic arithmetic functions.

 //——————————————————————

 public static void main (String[] args)

 {

 // declare variables to hold

 // the two numbers and operator

 int num1, num2;

 String operation;

 // collect the two numbers from the user

 Scanner input = new Scanner(System.in);

 System.out.println (“Enter the first number:”);

 num1 = input.nextInt ();

 System.out.println(“Enter the second number:”);

 Information Security Education Journal Volume 1 Number 2 December 2014 103

num2 = input.nextInt ();

// collect the operator from the user

 Scanner op = new Scanner(System.in);

 System.out.println(“Enter the operation: (+, -, *, /)”);

 operation = op.next ();

 // perform the operation

// and output the results

 if (operation.equals (“+”)){ // addition

 System.out.println(num1 + “ + “ + num2 + “ = “ + (num1 + num2));

 }

 if (operation.equals (“-”)){ // subtraction

 System.out.println(num1 + “ - “ + num2 + “ = “ + (num1 - num2));

 }

 if (operation.equals (“*”)){ // multiplication

 System.out.println(num1 + “ * “ + num2 + “ = “ + (num1 * num2));

 }

 if (operation.equals (“/”)){ // division

 System.out.println(num1 + “ / “ + num2 + “ = “ + (num1 / num2));

 }

 }
}

This program prompts the user for two numbers and an arithmetic operator. Both numbers are read as integers and the
operator is read as a string. Of note is the fact that there is an assumption that the user will provide the correct data. If a user
were to input a letter or a floating point number instead of the integer expected, this program would crash due to an input
mismatch exception. Furthermore, this program fails to do anything if the operator input does not match one of the values
checked for in the series of conditional statements. This allows not only for the possibility of an error due to a lack of

// perform the operation and output the results
// Switch statement has a ‘default’
switch (operation){
 case “+”:
 System.out.println (num1 + “ + “ + num2 + “ = “ + (num1 + num2));
 break;
 case “-”:
 System.out.println (num1 + “ - “ + num2 + “ = “ + (num1 - num2));
 break;
 case “*”:
 System.out.println (num1 + “ * “ + num2 + “ = “ + (num1 * num2));
 break;
 case “/”:
 System.out.println (num1 + “ / “ + num2 + “ = “ + (num1 / num2));
 break;
 default:
 System.out.println (“Operation ‘“ + operation + “‘ not recognized.”);
}

 104 Information Security Education Journal Volume 1 Number 2 December 2014

validation, but also for logical errors that decrease the value of the program for the end user.

A small enhancement to this program might be achieved by changing the if conditionals into a more efficient switch
statement.

In addition to cleaning the code up a bit, the switch statement allows for a default case which can be used to handle any input
given which does not match the mathematical operators this program is meant to handle. For instance, if the program receives
the string “add” instead of a “+” character, it will respond with the phrase “Operation ‘add’ not recognized” instead of
simply closing.

With the above example, we run into another potential issue. The programmer decided to store numerical values as integers
for evaluation. Perhaps it simply was not considered that a user may wish to input a decimal value, or that a decimal value
might result from the valid operations. For instance, if a user attempts to divide 3 by 4, the result provided here will be 0.
Changing the expected value from an integer (int) to a float will allow for the correct calculation – this is an example of how
a simple oversight could cause significant risk. If this program were used by an accountant, and all decimal values were
treated as 0, the results could be disastrous.

While considering division, it is clear that this program also overlooks division-by-zero errors. Such a condition presents an
exception, and abnormal program termination. There are several options available within Java to handle exceptions like
division by zero.

Let’s examine a new version that uses the try-catch statements to handle exceptions like these:

import java.util.Scanner;

public class MyCalculator3

{

 //——————————————————————

 // Reads user input from the command line to

 // collect two numbers and an operator

 // to perform basic arithmetic functions.

 //———————————————————————

 public static void main (String[] args){

 // declare variables to hold the two

 // numbers and operator

 float num1, num2;

 String operation;

 // try block houses our calculator code and

 // passes an exception to the catch clause

 // if one occurs

 try{

 // collect the two numbers from the user

 Scanner input = new Scanner(System.in);

 System.out.println(“Enter the first number:”);

 num1 = input.nextInt();

 Information Security Education Journal Volume 1 Number 2 December 2014 105

System.out.println(“Enter the second number:”);

 num2 = input.nextInt();

 // collect the operator from the user

 Scanner op = new Scanner(System.in);

 System.out.println(“Enter the operation: (+, -, *, /)”);

 operation = op.next();

 // perform the operation and

 // output the results

 // Switch statement has a ‘default’

 switch(operation){

 case “+”:

 System.out.println(num1 + “ + “ + num2 + “ = “ + (num1 + num2));

 break;

 case “-”:

 System.out.println(num1 + “ - “ + num2 + “ = “ + (num1 - num2));

 break;

 case “*”:

 System.out.println(num1 + “ * “ + num2 + “ = “ + (num1 * num2));

 break;

 case “/”:

 System.out.println(num1 + “ / “ + num2 + “ = “ + (num1 / num2));

break;

 default:

 System.out.println (“Operation ‘“ + operation + “‘ not recognized.”);

 break;

 }

 }

 // catch clause takes effect if the exception

 // occurred in the try block

 catch(java.util.InputMismatchException e){

 System.out.println (“Input was not a valid number.”);

 }

 catch (java.lang.ArithmeticException e){

 System.out.println (“You cannot divide by zero.”);

 }

 }

}

The try block performs the instructions it contains unless an exception is encountered. Here the program is capturing two
exceptions – InputMismatchException and ArithmeticException. The division by zero error is defined by the ArithmeticException
and if encountered, this program prints a message to the screen stating that it cannot divide by zero. Similarly,

 106 Information Security Education Journal Volume 1 Number 2 December 2014

InputMismatchException helps the program by catching non-numeric input provided by a user. If the first number to be
considered by the calculator is “w”, an exception occurs when this character is parsed as a number. Instead of a software
crash, the program will print a message to the screen informing the user of their error and then close gracefully.

It should be noted that while these techniques may seem standard fare for beginning programming, these are common
mistakes that are easy to make. As such, any lack of input validation or error handling is going to be the kind of low-hanging
fruit a malicious user will attempt to discover and exploit during the course of a sustained attack against a system. By
stressing the importance of these defensive programming measures, we can prepare the novice programmer for when they
will need to be aware of SQL injection and cross-site scripting vulnerabilities in their future studies and work experience.

3.5 The Importance of Comments
Providing clear comments in the program design and flow of execution is often the last consideration of a novice programmer.
It seems like unnecessary work, because it is simple text which does not affect the performance of the program. After all, the
primary focus in most courses and real-world projects is placed on producing an executable which, at least, meets the
expectations of the given assignment.

Instructors often have the unenviable job of sifting through a student’s code to discern the logic employed – a task made
much more difficult by those students who fail to employ sufficient comments in their code.

Beyond academic evaluation, a student programmer should be aware of the consequences of a lack of comments. The
Javadoc tool is invaluable as a documentation engine, yet it is only as efficient as the code comments and format entered by
the programmer. The resultant documentation can be used to accurately convey the logic, form and function of the
programmer’s code. As the software development life cycle places this code out of the original programmer’s hands and into
those of others, this becomes a measure of efficiency that has substantial business cost associated with it. From this
perspective alone, the return on investment for proper code commenting technique becomes immediately apparent.

Here is an example of Javadoc-style comments in a snippet of code:

/**

* Returns a Boolean response to whether a given

* String is a palindrome. The string is stripped

* of whitespace via a regular expression.

* The first if statement checks for a length

* of 0 or 1, which would automatically make it a

* palindrome. The second if statement examines the

* first and last characters of the string.

* This is continued by removing the first and the

* last characters of the string and recursively

* evaluating via a substring. <p>

* A palindrome is a sequence of elements which

* reads the same forward or reversed. An example

* would be “amore roma” or the number “123454321.”

* @param str the string which is the

* palindrome candidate

* @return a Boolean true/false answer

*/

public static boolean findPalindrome(String str) {

 str = str.replaceAll(“\\s”, “”);

 Information Security Education Journal Volume 1 Number 2 December 2014 107

The value of this type of commenting can be readily apparent once students use the Javadoc executable (found in the bin
folder of Java development kit installations) to generate elegant HTML documentation from the above snippet.

Good comments can employ a variety of styles, but they bring a sense of cohesion to a programming team if the team has a
common methodology. The security aspect of information assurance can be influenced by even such a small gesture as this
- for the ability to develop, maintain, and release quality code according to a set standard regardless of the environmental
conditions can guarantee adherence to secure development practices and the delivery of the expected level of service to the
customer.

4. Results

The use of relevant, real-world examples of information security vulnerabilities and exploits in class discussions and exercises
has produced enough positive anecdotal feedback in its first offering to warrant further inquiry and research.

Lively and engaged conversation like that encountered when discussing security incidents like major data breaches and
hacked social networking accounts honestly almost seems out of place in a computer science programming course the first
time it occurs. The positive impact of this engagement and the teachable moments such incidents provided in a single
semester of focused effort make it attractive enough to refine further, and to share in this paper for others to duplicate and
extend.

Students seemed thrilled to get to try to “break” their favorite (or least favorite) programs by intentionally creating error
conditions like missing files, flash drives, networks, and so on. The brainstorming that followed, on how they might program
security measures into their apps that handled similar situations, was among the most creative of the entire course.

Buffer overflows and array index-out-of-bounds errors appeared to make more sense to students when they actually tried to
run snippets of code with intentionally-placed errors themselves, rather than just viewing error messages on a slide or on the
instructor’s screen. And, exception handling can be daunting work in Java, but students reported being better able to
understand and appreciate exception handling after building, breaking, and securing code.

This immersion into secure coding techniques has also made students more aware of current information security issues and
interested in knowing how common, every-day applications become susceptible to malicious code exploits. After
understanding that poor program design can create headlines, students show greater interest in developing software that is
resilient to common attacks.

5. Conclusions and Future Work

The approach presented in this paper has shown positive initial results in improving motivation and engagement in developing
secure applications in a second-semester, freshman-level computer science II course in Java. The authors intend to extend
this implementation into higher-level programming courses, and many of the examples given here have already been added
to a security and ethics course at the sophomore level.

One area of interest for future work is gathering longitudinal data for the students involved in this first implementation group
to determine the impact of the secure coding exercises as presented upon their understanding, ability and performance at
developing secure code in later courses. The authors also plan to develop specific units for a senior-level software engineering

if(str.length() == 0 || str.length() == 1)

 return true;

 if(str.charAt(0) == str.charAt(str.length()-1))

 return findPalindrome(str.substring(1, str.length()-1));

 return false;

}

 108 Information Security Education Journal Volume 1 Number 2 December 2014

Aaron Walker is an Information Security Analyst for the University of North Georgia. He also teaches
part-time for the Computer Science and Information Systems department. He loves to conduct technical
research in malware analysis as well as studying effective means of communicating information security
concerns in terms of business impact as well as end user engagement.

course that reuse and reinforce some of the same principles, and further augment the examples with application-specific
security concerns appropriate to the senior-level course.

References

[1] Noureddine, A. A., Damodaran, M. (2008). Security in web 2.0 application development. In: Proceedings of the 10th

International Conference on Information Integration and Web-based Applications & Services (iiWAS ’08), p. 681-685. ACM.

[2] Ge, X., Paige, R. F., Polack, F. A. C., Chivers, H., Brooke, P. J. (2006). Agile development of secure web applications. In:
Proceedings of the 6th international conference on Web engineering (ICWE ’06), p.305-312. ACM.

[3] Edmundson, A., Holtkamp, B., Rivera, E., Finifter, M., Mettler, A., Wagner, D. (2013). An empirical study on the effectiveness
of security code review. In: Proceedings of the 5th International Symposium on Engineering Secure Software and Systems
(ESSoS’13), p. 197-212. Springer-Verlag, Berlin, Heidelberg.

[4] Markham, S. A. (2009). Expanding security awareness in introductory computer science courses. In: Information Security
Curriculum Development Concerence (InfoSecCD ’09), p.27-31. ACM, 2009.

[5] Chi, H., Jones, E. L., and Brown, J (2013). Teaching Secure Coding Practices to STEM Students. In: Information Security
Curriculum Development Concerence (InfoSecCD ’13), p. 42-48. ACM.

[6] Futcher, L., von Solms, R. (2008). Guidelines for secure software development. In: Proceedings of the 2008 annual research
conference of the South African Institute of Computer Scientists and Information Technologists on IT research in developing
countries: riding the wave of technology (SAICSIT ’08), p.56-65. ACM.

[7] Cooper, S., Nickell, C., Piotrowski, V., Oldfield, B., Abdallah, A., Bishop, M., Caelli, B., Dark, M., Hawthorne, E. K., Hoffman,
L. Pérez, L. C., Pfleeger, C., Raines, R., Schou, C., Brynielsson, J. (2010). An exploration of the current state of information
assurance education. ACM SIGCSE Bulletin, 41 (12) 109-125.

[8] Kanno, Y., Terada, M., Yajima, H., Kamamura, T., Doi, N. (2009). A comparative study on structure of the motivation for
information security by security incident experiences. In: Proceedings of the 2nd International Conference on Interaction
Sciences: Information Technology, Culture and Human (ICIS ’09), p. 9-16. ACM.

[9] Newman, R. C. (2006). Cybercrime, identity theft, and fraud: practicing safe internet - network security threats and
vulnerabilities. In: Information Security Curriculum Development Concerence (InfoSecCD ’06), p.68-78. ACM.

[10] Munroe, R. P. (2007). Exploits of a mom. Retrieved June 6, 2014: http://xkcd.com/327/

Author biographies

Dr. Bryson Payne has taught Computer Science and Information Systems at the University of North
Georgia for 15 years, and is a Certified Information Systems Security Professional (CISSP®). Dr. Payne
served as the inaugural Department Head of CSIS at UNG, and for six years he served as the university’s
Chief Information Officer, overseeing an IT division with budgets in excess of $4 million annually. He is the
author of the book Teach Your Kids to Code (No Starch Press, 2015), holds a Ph.D. in computer science
from Georgia State University and has published articles in CIO magazine and numerous scholarly journals.

